Introduction

The Bose® ControlSpace® Surround Sound Card offers new opportunities for integration of surround sound systems into commercial spaces. The flexibility of ControlSpace systems and the enhanced listening experience afforded by a surround sound system, makes for an impactful product solution. This application note illustrates basic surround sound system design principles and the implementation of a multi-purpose facility design, within a ControlSpace system.

We will explore the following concepts:

• Surround sound system types
• Positioning surround sound loudspeakers
• Implementing a surround sound system
• Multi-purpose surround system design example

Background

We are more accustomed to the immersive listening experience provided by surround sound systems than ever before. They are used in many different types of venues from home theaters to movie theaters. These venues range in size from small spaces to large rooms, and the use of surround sound systems runs the gamut from multi-purpose implementations to highly specialized facilities. Figure 1 illustrates the four primary quadrants of surround sound venue implementation today.

Surround sound system types

The markets targeted by the new ControlSpace Surround Sound Card fit within the upper right-hand quadrant of this graph. Medium to large sized venues with multi-purpose needs are in the sweet spot for surround sound systems managed by ControlSpace. Knowing this, let's take a look at the basic surround sound configurations in today's marketplace.

Surround sound systems are referenced by the number of output channels they produce. The three most common today are named 5.1, 6.1, and 7.1. The first number of this classification indicates the number of full range signals in use. The .1 represents the number of Low Frequency Effect (LFE) channels in operation. The LFE output channel may also receive low frequency information from any of the full range channels when bass management is in effect. The loudspeaker arrangements associated with each of these surround sound system types are shown in Figure 2.
Positioning surround sound loudspeakers

When designing loudspeaker systems to reinforce a specific surround sound configuration, the following recommendations will help you position each device appropriately. Front channel loudspeakers (Left, Center, Right) should be positioned behind acoustically transparent projection screens and at a height 65% of the total screen height from its base.

When the projection screen is opaque, the same height rule applies to left and right loudspeakers, but they are oriented outside the perimeter of the screen to a location which will not obscure the on-screen image. The center channel loudspeaker is positioned above the screen in cases like this.

A Low Frequency Effects (LFE) loudspeaker should always be located near the front channel loudspeakers. Moving this loudspeaker away from the other front loudspeakers will reduce its impact and effectiveness during music and movie playback.

The optimum LFE position is between the left and right loudspeakers and off axis from the center of the room. This will help to maximize low frequency energy throughout the listening space.

Bi-amped loudspeakers are recommended for use with the front channels (L, C, R). The crossover range between the front channels and the LFE loudspeakers should be between 80 and 100 Hz. Each of the surround channel loudspeakers should be full range devices.

Using surround sound loudspeakers that have wider than traditional horizontal coverage, or Articulated Array® technology can enlarge the sweet spot, providing a better surround experience to a larger number of listeners. This becomes a critical factor in system designs for multi-purpose facilities using surround sound.

Bose® Panaray® 402®, Panaray 302™A, and FreeSpace® DS100SE loudspeakers all use Articulated Array technology and make excellent surround sound devices.
Positioning surround sound loudspeakers (Continued)
In the Multi-purpose surround system design example which we will explore in the following pages, a 7.1 system design option is chosen for maximum flexibility. The positioning of the loudspeakers supporting the surround channels also have rules of thumb to promote a quality experience.

In 7.1 surround systems, the right and left surround loudspeakers (Ls & Rs), which mount on the side walls, should be positioned at 66% of the distance from the projection screen to the back of the room. The back surround loudspeakers (Bsl & Bsr) mount on the back wall of the listening space and are located 25% of the total room width from the back corners.

Large rooms often require a signal delay applied to rear surround channels to ensure localization to the projected image on screen. Figure 8 illustrates this delay zone with a dashed red box in the rear one-third of the listening space.

Note: Surround zone delays should only be implemented during playback of video sources (movies). If DVD-Audio program material is active, this signal delay should be disabled. ControlSpace® systems support dynamic configuration of delays and all manner of related system adjustments that are warranted as the input program material changes its content.

Signal Processing Considerations

The use of Compressor/Limiter processing blocks within ControlSpace systems is strongly recommended to protect loudspeaker drivers. It is normal for action movies to dramatically vary the loudness of passages to achieve a desired effect. Without compression components in the signal chain, extremely loud passages can easily damage loudspeakers in short order.

The DSP power and flexibility of ControlSpace systems will help you dynamically manage signal delay to surround channels as digital program content changes, and when multi-purpose systems vary modes of operation, ControlSpace will adapt its configuration in real time, according to your design.

Please see our multi-purpose surround sound application note for methods to implement these concepts in a system configuration of a Bose® ControlSpace® ESP Engineered Sound Processor.